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Abstract
The scattering state solutions of the Schrödinger equation for the Eckart
potential with the centrifugal term are obtained approximately. It is shown
that the solutions can be expressed in terms of the generalized hypergeometric
functions 2F1 (a, b; c; z). The normalized radial wave functions of scattering
states on the ‘k/2π scale’ and the calculation formula of phase shifts are also
derived. Three special cases for l = 0, β = 0 and r0 → ∞ are also studied
briefly.

PACS numbers: 03.65.Nk, 03.65.Db.

1. Introduction

It is known that the exact solutions of the wave equations (non-relativistic or relativistic)
are very important since they contain all the necessary information regarding the quantum
system under consideration. However, analytical solutions are possible only in a few simple
cases such as the hydrogen atom, the harmonic oscillator and others [1, 2]. Most quantum
systems could only be treated by approximation methods. A typical example is the rotating
Morse potential by the Pekeris approximation [3, 4]. Recently, the study of exponential-type
potentials has attracted much attention from many authors [5–15]. These potentials include
the Hulthén potential [5–7], the Rosen–Manning potential [8–11] and the Eckart potential
[12–15].

The Eckart potential introduced by him [16] has been widely applied in physics [17] and
chemical physics [18, 19]. In spherical coordinates (r, θ, φ), this potential is defined by

V (r) = −α
e−r/r0

1 − e−r/r0
+ β

e−r/r0

(1 − e−r/r0)2
, α, β > 0. (1)
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Here, the parameters α and β describe the depth of potential well, while the parameter r0 is
related to the range of the potential. When β = 0, the Eckart potential reduces to the Hulthén
potential.

The purpose of the present paper is to study the characteristics of scattering states for the
Eckart potential. The reasons we write this paper are as follows. On the one hand, we have
not yet found the scattering states related to this potential reported in previous literature. On
the other hand, the theoretical prediction of many properties of quantum systems require the
knowledge of radial wavefunctions of scattering states and the phase shifts.

This paper is organized as follows. In section 2, we show how to derive the arbitrary l-
state solutions of scattering states for the Schrödinger equation with the Eckart potential by the
approximate method since it gives the necessary repulsive core due to angular momentum. The
normalized radial wave functions of scattering states on the ‘k/2π scale’ and the calculation
formula of phase shifts are presented. Section 3 is devoted to three special cases for l = 0,
β = 0 and r0 → ∞. The concluding remarks are given in section 4.

2. Analytical approximations of scattering states

We start from the Schrödinger equation with natural units h̄ = µ = 1.

− 1
2∇2ψ(r, θ, ϕ) + V (r)ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (2)

where the potential V(r) is taken as the Eckart form in equation (1). By taking ψ(r, θ, ϕ) =
r−1u(r)Ylm(θ, ϕ) and separating variable equation (2), we can obtain the radial equation as

d2u(r)

dr2
+

[
2E +

2α e−r/r0

1 − e−r/r0
− 2β e−r/r0

(1 − e−r/r0)2
− l(l + 1)

r2

]
u(r) = 0. (3)

For the scattering states, E > 0. The boundary conditions are

r → 0, u(r) → rl+1; r → ∞, u(r) → 2 sin(kr − πl/2 + δl), (4)

where k = √
2E and δl is the phase shift of the l-wave. The radial wavefunctions of scattering

states for satisfying this boundary conditions are normalized on the ‘k/2π scale’[2, 20].
Equation (3) cannot be solved analytically for l �= 0 due to the centrifugal term. Therefore,

we must use an approximation for this centrifugal term similar to the bound states [5, 15].
Their calculations show that this approximation can give results in good agreement with the
results of the other methods [21] for large r0 values. It is noted that for large values of the
parameter r0, i.e., for small r/r0 the following formula

1

r2
≈ e−r/r0

r2
0 (1 − e−r/r0)2

(5)

is a good approximation to 1/r2. By taking this approximation into account, defining a new
variable z = 1 − e−r/r0 (r ∈ [0,∞), z ∈ [0, 1])and equation (3) lead to

d2u

dz2
− 1

1 − z

du

dz
+

(
k2r2

0

(1 − z)2
+

α′

z(1 − z)
− l′(l′ + 1)

z2(1 − z)

)
u = 0. (6)

Here,

α′ = 2αr2
0 , l′ = 1

2

[√
4l(l + 1) + 8βr2

0 + 1 − 1
]
. (7)

Considering the boundary conditions of the scattering states, we take the wavefunction with
the form

u(z) = zl′+1(1 − z)−ikr0f (z). (8)
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Substituting this into equation (6) allows us to obtain the following second-order differential
equation

z(1 − z)
d2f (z)

dz2
+ [2(l′ + 1) − (2l′ + 3 − 2ikr0)z]

df (z)

dz

+ [α′ − (l′ + 1)2 + 2ikr0(l
′ + 1)]f (z) = 0, (9)

which is called the hypergeometric differential equation [22, 23]. Thus, the analytical solution
is the hypergeometric function

f (z) = 2F1(a, b; c; z). (10)

The parameters are

a = l′ + 1 +
√

α′ − k2r2
0 − ikr0, b = l′ + 1 −

√
α′ − k2r2

0 − ikr0, c = 2l′ + 2.

(11)

Here the hypergeometric function 2F1(a, b; c; z) is a special case of the generalized
hypergeometric function [22, 23]

pFq(α1, α2, . . . , αp;β1, β2, . . . , βq; z) =
∞∑

k=0

(α1)k(α2)k . . . (αp)k

k!(β1)k(β2)k . . . (βq)k
zk, (12)

where the Pochhammer symbol is defined by (x)k = 	(x + k)/	(x). Thus, the radial
wavefunction of scattering states is

u(r) = Nkl′(1 − e−r/r0)l
′+1 eikr

2F1(a, b; c; 1 − e−r/r0). (13)

We now study the asymptotic form of the above expression for large r, and calculate the
normalization constant of radial wavefunctions Nkl′ and phase shifts. From formula (11), we
have

c − a − b = 2ikr0 = (a + b − c)∗, (14a)

c − a = l′ + 1 −
√

α′ − k2r2
0 + ikr0 = b∗, (14b)

c − b = l′ + 1 +
√

α′ − k2r2
0 + ikr0 = a∗. (14c)

By using the transformation formulae for hypergeometric functions [22, 23]

2F1(a, b; c; z) = 	(c)	(c − a − b)

	(c − a)	(c − b)
2F1(a, b; a + b − c + 1; 1 − z)

+ (1 − z)c−a−b 	(c)	(a + b − c)

	(a)	(b)
2F1(c − a, c − b; c − a − b + 1; 1 − z),

(15)

and paying attention to 2F1(a, b; c; 0) = 1, we have

2F1(a, b; c; 1 − e−r/r0) = 	(c)	(c − a − b)

	(c − a)	(c − b)
2F1(a, b; a + b − c + 1; e−r/r0)

+ (e−r/r0)c−a−b 	(c)	(a + b − c)

	(a)	(b)
2F1(c − a, c − b; c − a − b + 1; e−r/r0)

−−−−−→
r→∞ 	(c)

[
	(c − a − b)

	(c − a)	(c − b)
+ e−2ikr

(
	(c − a − b)

	(c − a)	(c − b)

)∗]
. (16)
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Letting

	(c − a − b)

	(c − a)	(c − b)
=

∣∣∣∣ 	(c − a − b)

	(c − a)	(c − b)

∣∣∣∣ eiδ, (17a)

then (
	(c − a − b)

	(c − a)	(c − b)

)∗
=

∣∣∣∣ 	(c − a − b)

	(c − a)	(c − b)

∣∣∣∣ e−iδ, (17b)

where δ is a real number. Formula (16) then becomes

2F1(a, b; c; 1 − e−r/r0)−−−−−→
r→∞ 	(c)

∣∣∣∣ 	(c − a − b)

	(c − a)	(c − b)

∣∣∣∣ e−ikr [ei(kr+δ) + e−i(kr+δ)]. (18)

Substituting equation (18) into equation (13) leads to

u(r)−−−−−→
r→∞ 2Nkl′	(c)

∣∣∣∣ 	(c − a − b)

	(c − a)	(c − b)

∣∣∣∣ cos(kr + δ)

−−−−−→
r→∞ 2Nkl′	(c)

∣∣∣∣ 	(c − a − b)

	(c − a)	(c − b)

∣∣∣∣ sin[kr − πl/2 + (π(l + 1)/2 + δ)]. (19)

Comparing equations (4) with (19), we have the phase shifts as

δl = π(l + 1)/2 + arg 	(c − a − b) − arg 	(c − a) − arg 	(c − b)

= π(l + 1)/2 + arg 	(2ikr0) − arg 	
(
l′ + 1 + ikr0 −

√
α′ − k2r2

0

)

− arg 	
(
l′ + 1 + ikr0 +

√
α′ − k2r2

0

)
, (20)

and the normalization constant on the ‘k/2πscale’ as

Nkl′ = 1

	(c)

∣∣∣∣	(c − a)	(c − b)

	(c − a − b)

∣∣∣∣

= 1

	(2l′ + 2)

∣∣∣∣∣∣
	

(
l′ + 1 + ikr0 −

√
α′ − k2r2

0

)
	

(
l′ + 1 + ikr0 +

√
α′ − k2r2

0

)
	(2ikr0)

∣∣∣∣∣∣ . (21)

3. Discussion

After approximately solving the scattering states of the l-wave Schrödinger equation with the
Eckart potential, we should make three remarks.

(1) When l = 0, the centrifugal term l(l+1)

r2 = 0, and the approximation centrifugal term
l(l+1) e−r/r0

r2
0 (1−e−r/r0 )2 = 0. Thus letting l = 0 in equation (7), we have l′ = (√

8βr2
0 + 1 − 1

)/
2.

Equations (20) and (21) reduce to the exact phase shift formula and the normalization
constant on the ‘k/2πscale’ for the scattering states of the s-wave Schrödinger equation
with the Eckart potential, respectively.

(2) From formula (7), when β = 0, l′ = 1
2

[√
4l(l + 1) + 8βr2

0 + 1 − 1
] = l, the integer l is

the usual angular momentum quantum number. Then the Eckart potential reduces to the
Hulthén potential (see equation (1)). Equations (20) and (21) reduce to the phase shifts
and the normalization constant on the ‘k/2π scale’ of the Hulthén potential, respectively,
i.e.

δl = π(l + 1)/2 + arg 	(2ikr0) − arg 	
(
l + 1 + ikr0 −

√
α′ − k2r2

0

)

− arg 	
(
l + 1 + ikr0 +

√
α′ − k2r2

0

)
, (22)
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Nkl = 1

(2l + 1)!

∣∣∣∣∣∣
	

(
l + 1 + ikr0 −

√
α′ − k2r2

0

)
	

(
l + 1 + ikr0 +

√
α′ − k2r2

0

)
	(2ikr0)

∣∣∣∣∣∣ . (23)

The above expressions are the same as the approximate analytical solutions of the l-wave
scattering state for the Schrödinger equation with the Hulthén potential [7].

(3) When β = 0, α = Ze2/r0, r/r0 → 0, the Eckart potential reduces to the Coulomb
potential, i.e.

V (r) = −α
e−r/r0

1 − e−r/r0
+ β

e−r/r0

(1 − e−r/r0)2
= −Ze2

r0
· e−r/r0

1 − e−r/r0
−−−−−→

r/r0→0
− Ze2

r
. (24)

From formulae (7) and (11), we can obtain l′ = l, α′ = 2Ze2r0 and

lim
β=0,r0
1

a = lim
β=0,r0
1

(
l′ + 1 +

√
α′ − k2r2

0 − ikr0
)

= lim
r0
1

(
l + 1 +

√
2Ze2r0 − k2r2

0 − ikr0
)

= l + 1 − iZ/ka0, (25)

lim
β=0,r0
1

b = lim
β=0,r0
1

(
l′ + 1 −

√
α′ − k2r2

0 − ikr0
)

= lim
r0
1

(
l + 1 −

√
2Ze2r0 − k2r2

0 − ikr0
)

= lim
r0
1

(−2ikr0) → ∞, (26)

where a0 = h̄2/µe2 is the Bohr radius. Using the relation of the hypergeometric function
with the confluent hypergeometric function [22, 23],

lim
b→∞ 2F1(a, b; c; z/b) = 1F1(a; c; z), (27)

we can rewrite the radial wavefunction (13) as
u(r) = Akl(kr)l+1 eikr

1F1(l + 1 − iZ/ka0; 2l + 2;−2ikr). (28)

The above expression is the same as the radial wavefunction for the scattering states of the
Schrödinger equation with the Coulomb potential [2, 20]. Where the normalization constant
as

Akl = 2l+1 |	(l + 1 − iZ/a0k)| eπZ/2a0k

(2l + 1)!
. (29)

Now, we will discuss degradation of phase shifts. Since

lim
β=0,r0
1

arg(c − a) = lim
r0
1

arg
(
l + 1 −

√
2Ze2r0 − k2r2

0 + ikr0
)

= arg(l + 1 + iZ/ka0), (30)

lim
β=0,r0
1

[arg 	(c − a − b) − arg 	(c − b)]

= lim
r0
1

[
arg 	(2ikr0) − arg 	

(
l + 1 +

√
2Ze2r0 − k2r2

0 + ikr0
)]

= lim
r0
1

[arg 	(2ikr0) − arg 	(l + 1 + 2ikr0)]

= lim
r0
1

[arg 	(2ikr0) − arg[(l + 2ikr0)(l − 1 + 2ikr0) · · · (2ikr0)	(2ikr0)]]

= −π(l + 1)/2. (31)
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So formula (20) reduces to

lim
β=0,r0
1

δl = π(l + 1)/2 + arg 	(c − a − b) − arg 	(c − a) − arg 	(c − b)

= − arg 	(l + 1 + iZ/ka0)

= arg 	(l + 1 − iZ/ka0). (32)

The above expression is the same as the phase shifts for the Schrödinger equation with the
Coulomb potential [2, 20].

4. Conclusions

In this paper, we have discussed characteristics of l-wave scattering states for the Eckart
potential. Analytical approximations of scattering states to the l-wave solutions are deduced.
The normalized radial wavefunctions of scattering states on the ‘k/2πscale’ and the calculation
formula of phase shifts are presented. When β = 0, the Eckart potential reduces to the Hulthén
potential, and when β = 0, α = Ze2/r0 and r/r0 → 0, the Eckart potential reduces to the
Coulomb potential. The results in this paper can reduce to solutions of scattering states of the
Schrödinger equation with the Hulthén potential and the Coulomb potential.
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